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Rayleigh-Benard convection with rotation at small Prandtl numbers
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We present experimental and theoretical results near the onset of the RayleigtttRenvection with
rotation about a vertical axis in a fluid with a Prandtl numbeclose to 0.18. In the experiment we used a
H,-Xe gas mixture with a separation ratib=0.22 and a Lewis humbef=1.22 at various pressures and
dimensionless rotation raté€® up to 400. On the basis of a standard weakly nonlinear stability analysis, we
found a supercritical, stationary bifurcation f6¥=<13, which became subcritical over the range<I3
=160. For{)=160 a supercritical Hopf bifurcation precedes the stationary instability of the uniform state.
Following the unstable straight-roll fixed point in the subcritical regime by Galerkin methods we determined
the location of the saddlenode and the stability of the nonlinear two-dimensional straight-roll state. The rolls
were found to be unstable to three-dimensionappers-Lortz perturbations for 332 =<160. Theoretical
results for a pure fluid with the same were qualitatively similar. Measurements using shadowgraph flow
visualization yielded a bifurcation line and &b range of subcriticality, which agreed with the stability
analysis. In the subcritical range the experiment revealed a discontinuity of the pattern amplitude at onset, but
was unable to find any hysteresis. Patterns at onset fluctuated irregularly between the ground state and the
finite-amplitude state. In this parameter range the convection pattern further above onset was chaotically time
dependent. Investigation of the Hopf bifurcation line was difficult because of a wall mode that, fodarge
preceded the bulk instability. Fé2 =400, patterns were found in the sample interior only when the expected
Hopf bifurcation was exceeded by about 10%. This is consistent with the convective nature of the bifurcation.
However, the observed structure, although time periodic, was spatially disordered and had a frequency that was
considerably larger than the expected Hopf frequency. In a separate sample cell with a radial ramp in the
spacing no structure was observed at all in the cell interior until the expected stationary instability was reached.
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I. INTRODUCTION =27fd?/v above a critical valu€),, =0(10), rolls are un-
stable to another set of rolls with an angular orientation rela-
Convection in a thin horizontal layer of fluid heated from tive to the first, which is advanced in the direction of rotation
below, known as Rayleigh-Berd convectiofRBC), is per- by an anglef,, [5]. This instability has been the subject of
haps the most thoroughly studied pattern-forming systengeveral recent experimental investigations for srfldf 20,
[1,2]. The spatially uniform conduction state becomes un-using compressed gases with Prandtl numlsersy/ k near

stable to convection when the Rayleigh number one as the working fluif]. The predicted5,6] supercritical
nature of the stationary bifurcation to the KL state has been
R=agd®AT/kv (1) confirmed quantitatively by the detailed experiments of Hu

et al. [7,8]. However, these studies disagree with relevant
reaches a critical valug, [3]. Herea is the isobaric thermal weakly nonlinear theories in the form of Ginzburg-Landau
expansion coefficieny is the acceleration of gravitgisthe  (GL) equations. The time and length scales of the KL state in
fluid layer thicknessx is the thermal diffusivity,v is the the experiments do not have the expected power law depen-
kinematic viscosity, andAT is the temperature difference dence on the reduced control parameter AT/AT,—1.
across the fluid. RBC offers unique opportunities to examinéMoreover, the chaotic KL dynamics is expected to persist
a number of bifurcation and pattern-formation phenomenanear the onset for afl >}, . Again, contrary to theoretical
We focus on the effect of rotation with an angular frequencyexpectations, patterns with fourfold coordination were found
2xf about a vertical axig4] wheref is the rotation fre- near onset in recent experimeii®§ and in direct numerical
quency in hertz. In that case, interesting differences betweeintegrations of the Boussinesq equatid2$ when Q=70.
theory and experiment exist, which remain unresolved at thi©ver some parameter ranges the system formed a near-
time, and a number of theoretically predicted phenomengerfect square lattice that rotated slowly relative to the ex-

have not yet been observed in the laboratory. perimental cell. These discrepancies between experiments
One of the interesting aspects of this system is that, oveand theory remain unresolved.
a wide parameter range, spatiotemporal ch@FC) is en- The rangeoc=<0.7 remains largely unexplored by experi-

tered immediately above onset via a supercritical bifurcationment because representative fluids are difficult to find. Pure
In this weakly nonlinear state of STC, first predicted byoKu gases generally have=2/3 (the hard-sphere gas vajyand
pers and Lortz(KL) for dimensionless rotation rateQ classical liquids haver>1. Although o vanishes at the su-
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0.4 PSS S ~ ization of the flow patterns was achieved with the shadow-
[ W instable four-filliipz:;r:tt:;;aalnion graph method. A weakly nonlinear stability analysis of the
¥ Super- Boussinesq equations for the mixture was carried out for
03} cnp:g?sl 3 comparison with the experiment. For this we found theo-
ot retically that the stationary-bifurcation branch nday, is

preceded by the Hopf bifurcation, with the CD2 bifurcation
at Qcp,=200. In the experimenf) values up to 400 could
e be obtained; thus the entire subcritical range and a significant

Suberitical

Prandtl number ¢
o
N

O Q027 Super- part of the predicted Hopf range were accessible.
01r v criical ] In agreement with our calculations, we found that the bi-
; Hoef furcation is supercritical fof2<€,;=13 and subcritical for
o ;o largerQ). Near but below{,;, the nonlinear state at onset was
0 101 102 chaotic, as expected abo¥g, =3.8. For(;<Q =50 we

found a chaotically time-dependent state that appeared dis-
continuously with a finite amplitude at onset, but surprisingly
we found no hysteresis. DirectBt onset, the system fluctu-
tained theoretically, except for the near-vertical dotted one tha ted intermittently between the chaotic convecting state and

gives the approximate experimentally determined location of thehe .groun.d state. Fof2=50 th? amplitude mc_:reaset_j drq—
transition from the KL state to the fourfold-coordinated state .31tm‘51t'c"’1”.yJUSt .above onse?, but it was not possible to |dent|fy
onset and the horizontal dotted one that indicates the paramet@r clear jump in the experiment. Although vye searched .for it
range explored in the present study. The dash-dotted line labeledt 2 UP to about 400, we were unable to find a clear signa-
Qy, shows the transition from straight rolls to”fpers-Lortz or  tUre of the tlmg—perlqdlc pattern, which should have resulted
domain chaos at onset. The solid line labefed and Q,, is the ~ from a Hopf bifurcation.

tricritical line that separates the supercritical from the subcritical
bifurcation range. The dashed line label€¢t, is the line of
codimension-two points where the Hopf bifurcation meets the sta-
tionary bifurcation.

Rotation rate Q

FIG. 1. The bifurcation diagram for an infinitely extended pure
fluid as a function ofe- and ). All lines in the diagram were ob-

II. EXPERIMENTAL METHOD AND APPARATUS

Our apparatus is described in detail elsewHd@. We
used cylinderical cells of aspect ratids=radius/height
perfluid transition of liquid*He, experiments with this fluid, =8.3 and 11 with the same heigtit=4.00+0.02 mm. The
especially with rotation about a vertical axis, are complexbottom of each cell was a diamond-machif&d] aluminum
and flow visualization is difficult. Values af of order 10 2 plate. The top plate was an optically flat sapphire. A porous
are accessible with liquid metals; but the range 400  cardboard ring was sandwiched between the plates for the
=0.7 is not represented by pure classical fluids. Howeversidewall. The sample was a commercially available high-
recently it was recognized that valuescofis low as 0.17 can purity mixture of H-Xe. The quoted molar ratio of HXe
be reached in gamixtures[10], thus opening up a parameter was 0.496:0.504. The apparatus was mounted on a rotating
range with interesting new phenomena. b6r0.33 the pre- table. A shadowgraph tower was mounted axisymmetrically
dicted bifurcation diagram for RBC with rotation is very rich on top of the apparatus to enable imaging in the rotating
[3,6,11-14. Forpurefluids it is shown in Fig. 115]. In Sec.  frame. The direction of rotation of the whole assembly was
Il we show that qualitatively it does not change for our gascounterclockwise when viewed from above. The physical an-
mixture. At smallQ<Q,,, the stationary bifurcation is ex- gular rotation frequencwy=2f was scaled by the vertical
pected to be supercritical. In this range the KL state is previscous diffusion timer,=d?/v to yield the dimensionless
dicted aboveQ),, =5<Q. Over the intermediate range rotation frequencyQd=wq7,. Increasing the pressure de-
0,=0=<Q,, the bifurcation is predicted to bsubcritical creases and hence increases. Typically, 7, was between
[11,6,13. Here the finite-amplitude nonlinear state above the25 s and 70 s, depending on the pressure and the mean tem-
bifurcation is also expected to be KL unstable. As is seen irperature. We used pressures of 10—-45 bars that were held
Fig. 1, the subcritical range depends @n constant to within about a millibar. With a reasonable choice

For sufficiently large) the stationary bifurcation is pre- of pressure and cell height it was possible to explorehe
dicted to be preceded by a supercritical Hopf bifurcafieh ~ range from zero up into the Hopf regime.

The locusQ¢p,(o) where the stationary and Hopf bifurca- ~ Most of the experiments were carried out at pressures of
tions meet is a codimension-twCD?2) line in the o-Q 16.2 bars. Withr,=27.5 andwy up to 5.82 rad/s, this pres-
plane. So far the Hopf bifurcation has not been accessible igure allowed us to explor@ <160. For highel) up to 400,
experiments becaug®.p,(o) diverges with increasing at ~ we used a pressure of 40 bars. Varying the pressure had only
0=0.677[3,12] and because smallervalues are difficult to a small effect onos, which varied in the range of 0.17t
achieve, particularly in large-aspect-ratio cells and with flowsmall pressurggo 0.185. The samples all conformed well to
visualization. the Boussinesq approximation; the Boussinesq pararieter

In this paper we focus on rotating convection femear  [18] varied from 0.066 to 0.49 over the whole range. The
0.18. This value is close to the lowest accessible value wittmaximum Froude numbeE=rw3/g, which measures the
compressed gases, and was obtained by using a mixture effect of the centrifugal acceleration, was less than 0.15.
H, and Xe with a mole fractioiX close to 0.910]. Visual- Herer=1I'd is the radius of the cell. For our mixture the
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=R.(Q)/R;(0) as a function o) for 0=0.174 for a pure fluid
(dashed lingand for a mixture with =0.22 and£=1.22 (solid
line). The smallx shows the lower tricritical point af,; of the
mixture, which is nearly indistinguishable from the pure case. Thecritical Rayleigh number . at intermediate(2. The symbols and

circles give the CD2 points. The upper tricritical points are locatedsolid line have the same meaning as in the previous figure. The
aboveQ¢p,, and are thus preempted by the Hopf bifurcation. Thedashed line is the calculated location of the saddlenode for the
stationary bifurcation lines are independentoof

relevant binary-mixture parametefsee Sec. Il were ¥

=0.22 andL=1.22. These were the same within 1% for all

the runs.
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FIG. 4. A more detailed plot on a line& scale of the reduced

unstable straight rolls ana=0.174.

cal € range explored was-0.05s€=<0.1, although some
runs went to largee.

Usually, a large number of imagésp to 2048/stepof a
central square part of the cell were analyzed in real time for

The temperature of the bath was fixed at 37.5 °C. At eacleachAT. The inscribed square had a diagonal that was 91%

Q, the temperature of the bottom plate was raised quasistat®f the cell diameter. The images were taken at a constant
cally aboveAT () in small steps. The temperatures weretime interval of aboutr,=o7, (=5 s). At largeQ2=100,
regulated to achieve a stability oAT of better than Where a bifurcation to a wall modé9] preceded the bulk
10 3 °C. At each step we waited for 2 h, which is much bifurcation and where this mode occupied a significant frac-
longer than'2r,(=1/2 h), for the system to reach a steadytion of the cell, a sr_naller square unencumbered _by this mode
state. The smallesiT step used was 5 mK. After reaching Was analyzed. While searching for the Hopf regime we also

the highestAT, AT was lowered in small steps below onset {00k images of the entire circular cell.
to obtain data for both increasing and decreaginghe typi-

Ill. THEORY

35 : Our theoretical analysis of convection patterns is based on
A the standard hydrodynamic description, i.e., the generalized
301 ‘o Boussinesq equations with rotation for binary mixtures. As
- usual, the system is idealized to be laterally infinite. A linear
25 A"'/' ] analysis yields the critical propertiésritical wave number,
9 o Rayleigh number, Hopf frequengpf the rolls bifurcating at
g aor . onset. The finite-amplitude states above onset and their sta-
« E" bility are determined by using a weakly nonlinear analysis
o« 5y 9 ) and a fully nonlinear Galerkin approach. The main results are
~ ol | contained in Figs. 1-4 and Table I. Further details are found
in the Appendix.
sl | The calculations concentrated on a pure fluid with
=0.174 and on binary mixtures witbr=0.174 and 0.185.
. ‘ These values correspond to most of the experimental runs.
10’ 10 For mixtures(see also the Appendixadditional parameters
Q are required to describe the nature of the convecting state
FIG. 3. The reduced critical Rayleigh number, because of the coupling between the concentration and tem-

=R.()/R.(0) for ¥=0.22 andL=1.22 as a function of) on a
logarithmic scale. Circlegsquares and triangleare experimental
values foroc=0.174(0.185. The stationary bifurcatiorsolid and
dotted line$ is independent ofr. The lower tricritical point (),

the codimension-two poinfsolid circlg, and the Hopf bifurcation
(dashed lingare shown foroc=0.185.

perature fieldd20]. The temperature gradient changes the
concentration field because of diffusion. This so-called Soret
effect is characterized by the separation ratio

kr_ B
T —C

P=— - @

(1-0)Sy,

RI™®
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TABLE I. Parameter values of special bifurcation points for a The Hopf bifurcation line, on the other hand, dependsson
pure fluid, and for the binary mixture with =0.22 and£=1.22.  as well. Thus the shift of the CD2 point with is a conse-
The subscriptKL, t1, andCD2 are explained in the caption of quence of a shift of the Hopf bifurcation line. All the non-
Fig. 1. linear properties, i.e., the location of the tricritical bifurcation
and of the saddlenode in the subcritical region, depend on

g Pure fluid Mixture as would be eXpeCted.
R.(Q=0) 1707.8 1131.0

QpL 0.174 3.67 5.08 IV. RESULTS

fKL 0.174 1.015 1.032 At small Q where the bifurcation is supercritical, we de-
(% 0.174 1.113 1.192 . -

Q 0.174 1015 12.83 terminedAT,(Q) at the onset of convection from _the con-

1 trast of the shadowgraph images as described, for instance, in

M 0.185 L.127 1.224 Ref.[7]. At larger Q) where the bifurcation is subcritical and
Qu 0.185 10.79 13.93 the pattern is chaotic, a different method was required. There
lco2 0.174 7.32 11.28 we determined a time averagé,)(AT) of the maximum
Qco2 0.174 122.4 168.4 local amplitudeA(t,AT) of the pattern, and located the
rcpz 0.185 8.32 13.68 jump or rapid rise of A,)(AT,) [21].
Qcp2 0.185 138.0 197.2 There was no hysteresis, and thus the changéAgh

yielded an experimentally well defined onset that could be
resolved with a precision of 1§ to 10 2 in e, depending on
the Q) range; but it is unclear whether this onset should be
identified with the limit of stability of the basic state or with
some other point below this limit but above the saddlenode
of a subcritical bifurcation. Nonetheless, since this diconti-
nuity is the only experimentally well defined signature of the

where 8 is the solutal expansion coefficield; the thermal
diffusion ratio, T the temperatureC the mass concentration
of the heavier component, an8;=k;/[C(1-C)T] the
Soret coefficient. The quantitk; is defined so that the
heavier component moves to the cdglbt) region whenk;
>0 (kr<0). WhenW>0, the induced concentration gradi- \so¢ of convection, we refer to it asT, and used it to
ent is destabilizing the conduction state and the critical Ray-
leiah ber is reduced. i )< R0 compute alle values.
EI?A nudrg_t_er ISI reduce t, "GR.C( ). b'C( )- ot b Since our samples all conform well to the Boussinesq
N adgditiona’ parameter arises in binary mixtures becaus pproximationsee Sec. )| we have to a very good approxi-
the dynamics of the concentration variable is associated wit

. ) . Mation AT (Q)/AT(0)=R.(Q)/R.(0)=r.. Results forr .
an _m_dependent time sca_le governed by the concentration di erived thus fromAT,(Q) are shown in Fig. 3 over the
fusivity D. Thus the Lewis number

entire experimental range &) on a logarithmic horizontal
£=D/x (3)  scale. The solid line is the theoretical result forin the
stationary regime. Abové)-p, the Hopf bifurcation line
is important and serves as a measure of the ratio of the masstashed ling precedes the stationary ortdottedling. The
diffusion time to the thermal-diffusion time. In binary-gas data for intermediat€) values are shown in more detail in
mixtures, L=0(1). For O=0 the pattern immediately Fig. 4. Shown as well, as a dashed line in Fig. 4, is the
aboveR, then consists of rolls like those in pure fluiddd].  calculated location of the saddlenodg, for the unstable
In the calculations we use¥=0.22 and£=1.22, which  straight rolls that form at the subcritical bifurcation. Far
corresponds to the mixtures used in the experini0t =200 the data agree well with the calculationrgffor the
An important question is whether RBC in mixtures with laterally infinite system. For largeé®, where a primary Hopf
rotation behaves similarly to the pure-fluid case with thebifurcation is expected, the agreement with the calculation is
sameo. For £L=0(1) and positived we found thatR, was  not as good. We will return to this problem later in this paper.
reduced as expected, but that the bifurcation lines when ex- For Q)=<12, we observed the expected supercritical bifur-
pressed in terms of.= R.(Q)/R.(0) as well as the nature of cation to the KL state. There was no hysteresis, and the shad-
the instabilities do not differ qualitatively from those of a owgraph contrast grew continuously asvas increased be-
rotating pure fluid. This is consistent with general consideryond zero. A time series of images fd2=8.7 and e
ations because fof=1 the time scales of heat diffusion and =0.035 at time intervals of 2672 is shown in Fig. 5. Unlike
mass diffusion are equal, and because for posifivdboth  experiments with largel’ [2], we had only one domain of
diffusion processes lead to destabilization of the conductiomolls in the cell. The rolls changed orientation with time as is
state. expected for the KL state. We did not study this parameter
The results for the pure fluid and for the mixture with  range any further. A more detailed investigation using a cell
=0.174 are presented in Fig. 2. It is clear that both havewith a largerl” would be of interest.
similar Q) ranges for the supercritical, subcritical, and Hopf The range 1%()=<50 covers interesting new pattern-
bifurcations. However, there are quantitative differences. Théormation phenomena above the subcritical bifurcation. A
largest difference is found in the location of the CD2 pointtime series of patterns fdi =44 just above the onset at
and the Hopf-bifurcation line. Precise values for the specia=0.004 is shown in Fig. 6. The pattern dynamics was inter-
bifurcation points are given in Table I. We note that the sta-mittent, switching irregularly between a spatially disordered
tionary bifurcation lines depend o#f and £, but not ono.  large-amplitude state and a state of much smaller amplitude
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FIG. 5. A time seriegfrom left top to righ} of shadowgraph FIG. 7. Images for fairly smak at various(). From left to right
images forQ=8.7 ande=0.035 at intervals of 720 s or 26G:2. and then top to bottom, the(), €) values arg9,0.053, (22,0.016,
The size of each image is 819 5.9d. (30,0.039, (39,0.041, (48,0.038, (52,0.052, (67,0.043,

(96,0.055, and(120,0.02. The size of all but the last two images is
consisting of circular time independent rolls. The origin of 5.9dx5.9d. For Q=96 and 120 the size of the images isd.1
the small-amplitude circular pattern is unclear. It could bex4.1d.
caused by thermal sidewall forcind], or it could be due to
coupling between the Rayleigh-Bard instability and a could be localized with some of the cell in the ground state,
weak large-scale radial flow induced by the centrifugal forceor they could be extended, nearly or completely filling the
It was observed well below onset, and we will refer to it ascell.
the “ground state.” The pattern stayed in the ground state At very slightly largere the pattern always remained in
(large-amplitude stajefor long irregular time intervals, and the high-amplitude state, i.e., it ceased being intermittent,
jumped to the large-amplitude stagound staterandomly.  and it always filled the entire cell; but its appearance and
The high-amplitude pattern, once established, had a chaottame dependence remained similar to the images shown in
dynamics with a typical time scale close to the vertical ther-Fig. 6. Above onset, say far=0.04, the qualitative nature of
mal diffusion timer, . As is evident from Fig. 6, the patterns the pattern depended very little éh. A sequence of images
at various() and smalle is shown in Fig. 7. One sees that the
characteristic wavelength of the rolls decreases with increas-
ing Q.

In order to illustrate the pattern evolution with, we
present in Fig. 8 examples at seveealor () =30.3. Again
the qualitative nature of the patterns does not change much,

FIG. 6. Time serieqfrom top left to righy of images for(Q) FIG. 8. Images fo) =30.3 at various. From left to right and
=44 ande=0.004 at time intervals of 960 s or 290. The size of  then top to bottom, the values are 0.034, 0.182, 0.33, 0.43, 0.48,
each image is 5®x5.9d. and 0.63. The size of each image is®x%6.9d.
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An (arb. units )

0 s . .
0 500 1000 1500 2000
time (t,), arb. orig.

FIG. 11. Time series of the maximum shadowgraph amplitude
FIG. 9. A time sequence of images for=30.3 ande=0.034.  Am for 1 =44. From bottom to top, the data are fe= —0.004,

From left to right and then top to bottom, they are at intervals of0-004, 0.008, 0.015, 0.019. Starting &t —0.004, the data are
4.2 s (0.75,). The size of each image is 59/5.9d. upshifted by 0.0, 0.1, 0.2, 0.3, 0.4 for the successiwalues. The

circles areA,, for e=0.004 and correspond to the times of the

although the characteristic wavelength of the rolls increase§ages in Fig. 6.
with e.

In Figs. 9 and 10 we illustrate further the dynamics of the
patterns by showing time sequenceseat0.034 and 0.63,
respectively, both fof) =30.3. In both cases, as well as over
a wide ) range, a typical aspect of the dynamics is a wavy,,
disturbance of the rolls which, with growing amplitude, cul-

minates in local pinching and disconnection of rolls. This IS 0.0040.002. It is just below onset and samples only

particularly_ evident, fof instanqe, in the middle Of the third the low-amplitude circular ground-state pattern. The next one
gndrézgﬁ:égﬁ)%e?oozhzg. rge'v-irohtilprgg?ascselrjl?ur?)llll)sl ';Sfosllggleci{mas shifted upward by 0.1 for clarity. It is just above onset,
tf%le fifth and sixth imageps of Fig % SJuch an event typically?or €= +0.004:0.002. It shows the fluctuatlo_ns between the
T ground state and the large-amplitude state illustrated by the

images in Fig. 6. The actual values Af, coresponding to
these images are shown as open circles. The third data set
was displaced vertically by 0.2 and corresponds eo
=0.008. Although there are still a few fluctuations, they have
become quite rare and the system finds itself mostly in the
convecting state. Two more traces are shown, each upshifted
by another 0.1 relative to the previous one to avoid overlap.
They are fore=0.015 and 0.019 and show that the fluctua-
tions died out once the system was a percent or so above
onset.

For w=44, the time averagéA)(AT) of A, (AT,t) is
shown as a function of in Fig. 12. The opertsolid) circles
are for increasingdecreasingAT. One sees that, within our
resolution of about 0.002 i, there is no hysteresis at the
transition even though there is a large, sharp jumpAp).
The background level foe<0 is due in part to the experi-
mental noise, and in part to the weak concentric pattern be-
low onset.

In Fig. 13 we show the results fdA,) for a few selected
Q values. Over this entire range 6f, (A,,) shows a jump

FIG. 10. A time sequence of images fBr=30.3 ande=0.63.  AA, at onset, which increases monotonically with increas-
From left to right and then top to bottom, they are at intervals ofing (. We conclude that the bifurcation is subcritical even
4.2 s (0.75,). The size of each image is 595.9d. though there is no hysteresis. For 0, the background tends

results in a net rotation of the pattern. This dynamics has
significant similarity to that found in the numerical work of
Ref.[13] and displayed in Figs. 10 and 11 of that reference.
To characterize the transition to the large-amplitude state,
e show in Fig. 11 several time series of the maximum local
pattern amplitudé,(t) for ) =44. The lowest curve is for
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00040 cececto
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-0.02 0 0.02 0.04 0.06 0.15
£=AT/ATHQ) -1
FIG. 12. The time averagfA,,)(AT) of A, (AT,t) for Q=44.
Open(solid) circles were obtained with increasifdecreasingAT. o1
These data illustrate the absence of hysteresis. f
to grow with Q). This suggests that the contribution from the 0.05
small-amplitude circular patterfwhich accounts for part of
this backgroungmay be due to the centrifugal force.

On the basis of a Landau model for tricritical points we %
expect A A,)?=goX (Q—Q;)/k for the jump of the ampli-
tude ate=0. HeregyX(Q—Q;;) is the cubic andk the
quintic coupling coefficient. Thus, within this simple model,
(AA,)? should be linear in). A plot of the experimental
data as a function of) is shown in Fig. 14a). They can be

_descrlbed by a st_ralght line on_Iy_ if the point QI_: 17_'3 IS dashed line is a straight-line fit to the points foe25.9.(b) shows
ignored. Then a fit to the remaining ddtiashed line in the  yp 'y 0, and the straight solid line is a fit to all the data. This fit
figure) gives(l; =22.0, which does not agree too well with ig 4150 shown ina) as a solid line.

the theoretical resuff),;=12.8 shown by the open circle. A
problem with this interpretation is that the data fér
=17.3 suggest that the bifurcation is still subcritical at that
rotation rate. This can be seen more clearly in Fig 15 thag
gives the results very near the onset for the two lowest
values. A better fit to all the data is illustrated in Fig.(li4
where AA,,) (rather than its squarés shown as a function

FIG. 14. The discontinuityAA,, in arbitrary units, of
(Am)(AT) at e=0 as a function of). The solid circles represent
the experimental points. The open circle represents the theoretical
value for the tricritical bifurcation(a) gives (AA,)? vs Q. The

state. As mentioned above, the region near the tricritical
oint should be the topic of additional experimental work in
cell more suitable for this parameter range.

The same procedure is followed for studying the finite-
amplitude convection for 53(Q0<150. As is shown in Fig.

6, the bifurcation remains nonhysteretic. However, over this

of (. The data suggest a linear dependence, and a straigq,-n e the data do not show a clear jump in amplitude. Rather
ine fit[solid line in Fig. 14b) as well as in Fig. 1é] yields | Am% grows. continuously. albeit V‘eryprapi dlyp T e

2 =13.5 that is in satisfactory agreement with the theorEt'creases. Such a rapid increase of the amplitude would seem

inhomogeneity that arises abo¥ke=50. A likely candidate

0.25 T T T T T T Lo o ;
. for this inhomogeneity is the wall mod&9], which for large
0.2t _-.d-"'-.—’ - . : : :
O
£ e _oaf o ®
2015 mﬂl:p R k2 [ 4
£ =] 'c (o]
©
~ eo0000000 _Z 0.08 o ° .
A0aF ® oo’oooooooo‘ S o
[o] ~
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FIG. 13. The time averagfA,,)(AT) of A,(AT,t) as a func- FIG. 15. The time averag€A,)(AT) of A,(AT,t) for Q
tion of € for Q=17.2(open circley 29.5(solid circles, 34.5(open =17.3(open circleg and 25.9(solid circles on an expanded hori-
squarep and 44.2(solid squares zontal scale.
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creasingAT. The solid symbols represent decreasiip. H
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1 - .
Q bifurcates from the conduction state before convection o5l |
occurs in the bulf22]. In the experiment, the bulk mode ) L
appeared first fof) up to 53.2; but for our next-highe® 0 N J . A.j\ .
=67.3 the wall mode appeared before convection started in 0 002 004 006 008 01 0.12 014
the system interior. The more gradual transition to the fully Frequency (1/1)

developed Iarge-amplitude statg ir)troduces a somewhat g5 17. (@) A part of the time series oA, in arbitrary units,
larger uncertainty into the determination of the threshold; buppserved at) =53 ande=0.004. (b) The power spectrum of the
this uncertainty still is only in the vicinity of 1%. The nature gntire time series af = 53.
of the pattern just above onset was qualitatively similar to
that of the patterns at lowdR, as already shown in Fig. 7. i . i ) i
At Q=53 and close to onset, the dynamics of the pattern&/ith I'=8.3. By fitting a straight line to the variance of the
was different from what was observed at otlferBursts of ~ 3-%0%3.9d square images in the center section, a slightly
finite-amplitude convection appeared and then disappeard@unded onset at=29.43 was found as shown in Fig. 20. As
with a regular period of about 46 but at different angular Shown also in Fig. 21, the onset was well below but
locations on a circle in the cell. A small part of the corre- Significantly abovery. This is not surprising for a Hopf
sponding time series &, is shown in Fig 17a). The power bifurcation in a finite system. When the bifurcation leads to
spectrum of the whole series of length 5290s shown in  traveling convection rolls, one has to distinguish between
Fig 17(b). Strangely, we observed this periodic bursting onlyconvectiveand absoluteinstability (see, e.g.[23]). For r
at()=53. >r perturbations grow exponentially; but below the abso-
For =100 it became more and more difficult to deter- lute instability atr,>r, they travel away faster than they
mine the bulk onset because, starting(at60, it was pre-  can grow and locally no structure evolves. In Fig.r20see

ceded by the appearance of the wall mdd8]. Here we the Appendix is shown as a vertical dash-dotted line. For a
describe the observed phenomenaoclose to 400. Figure

18 shows an image of the entire cell fét=403 andr
=28.96. At this(), the expected Hopf bifurcation point is at
ry=27.2 and the stationary one a{=34.1. One sees that
the wall mode penetrated far into the cell interior, leaving
only a small central part for the observation of the bulk on-
set. In the counterclockwise-rotating frame of the apparatus,
the wall mode traveled in the clockwise direction, with a
frequencyw,,= —19. To a good approximatiosa,, remained
constant ag was increased from below the bulk onset to
above. We define the wave number of the wall modejas
=N/T" whereN is the number of wavelengths along the pe-
rimeter of the cell. For close to the bulk onset,, remained
constant near 3.85. At higher the wall mode and the bulk
pattern overlapped in the entire cell, and we could not mea-
surew,, andq,, beyondr =30.25.

When convection first appeared in the cell center, it had
the form of small packets of traveling waves moving in ran-  FIG. 18. A shadowgraph image of the entire cell for=403,
dom directions. Figure 19 shows images of the entire celt=28.96, and'=8.3.
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r=R/R(Q

200 300 400

FIG. 19. Shadowgraph images of the cell with uniform spacing Q
for 1=403, I'=8.3, andr= (a) 29.44, (b) 29.61,(c) 29.76, (d) FIG. 21. Alinear plot of the reduced critical Rayleigh number
29.93,(e) 30.09,(f) 30.25. at largeQ). The theoretical bifurcation lines are for=0.185, cor-

responding to the experiment in tilsrange. The dashed line is the
finite system there will be an effective threshalg,, with primary Hopf bifurcation at, . The dash-dotted line is the absolute
ry<rfon<r,, below which no convection rolls occyi24]. instability atr,. The dotted line is the stability limit to stationary
The value ofr,, depends on the system size; above it theperturbations of the conduction state in terange where it is
spatial extent of the system is sufficient to permit growth toe_xpec;ehd to be preceded by the prln;]ary Hopf t;'f”rcafmhﬂ??
macroscopic amplitude before the rolls leave the sample. deﬁe). The open squares represent the onset of convectio for
r>r, net growth occurs locally and convective Structures:8'3 in the presence of sidewalls and a traveling wall mode. The
gen earally will be observed open triangles represent the onset of convection in the presence of a
N radial ramp of the cell spacing.
In the I'=8.3 cell, the interference from the wall mode P pacing
prevented us from making a clean measurement of the In an attempt to reduce the influence of the wall mode, we
traveling-wave frequency of the structure that appeared P . : . ’
abover,,. Thus, to study the bulk onset in detail with less cons'tructed two gells with a gentle radial ramp in the cell
interference from the wall mode, we made another cell with>Pacing for a radlua>g0 with ao= 28.6 mm[25] These
larger aspect ratiol=11.1. It had a spacing ofd cells had thicknesses in the uniform center sectiordf

=3.96 mm, which was only about 1% smaller than that of: 3.I27Omm ;}nd 3‘dg.3 mm, yielginD<0=§.‘71 igd 7.3’thresbpetc-
the I'=8.3 cell. Images were obtained from @X%7.5d Ively. Dver the radius ranga,=a<a,=4.15 cm the bot-

squares in the center. A typical time series of image§) at tom plate had a quarter of a cosine prqfile of amplitude 0.66
=396 just above onset at=29.8 is shown in Fig. 22. The mm. A paper sidewall was located radially 0'32 cm beyond
observed waves could be traveling or “blinking” or doing a a. Flgurg 23 shows t_he patterns that evolved in this case for
combination of these. The frequency of the waves was fountgll=307 in the cell withl"=8.7. Although the snapshots of

to be wp=41. Surprisingly, this is larger than the expected
Hopf frequencyw = 30.3. Asr increasedw,, decreased and

beyondr =30.2 only a time independent structure remained.

0.015 T \ T

0.01 1

Variance

0.006 o o
i o |

, °

b oo 00
1

0 PR ‘
28 30 32 34

r

FIG. 20. Shadowgraph intensity for the central square of the cell
with I'=28.3 at() =403. The vertical dashed, dash-dotted, and dot- FIG. 22. Time seriesfrom top left to right and then dowrof
ted lines are the theoretical convective,), absolute (,), and images of the central 705<7.5d square for thd"=11.1 cell atr
stationary () bifurcation points, respectively. The solid line is the =29.8 and()=396. The time between images is 0.70 s, corre-
experimental onset. sponding to 0.056, .
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FIG. 24. The shadowgraph intensity for the cell with a gentle
ramp in spacing fofa) Q=307,I'=8.7 and(b) 12=383,'=7.3.
Open(solid) circles are for increasin@decreasingr. The dashed

FIG. 23. Shadowgraph images of the cell with a gentle ramp indotted vertical line indicates the expected location of the Hopf
SpaCing f0m2307, F=87, and(a) r= 225,(b) 226,(C) 227,(d) (Stationary bifurcation.

23.1,(e) 23.4,(f) 23.43.
V. SUMMARY

the system superficially look like those of the rigid-sidewall |, this paper we reported on experimental and theoretical
case Fig. 18, a striking difference is that the circumferentiak;,dies of convection at a Prandtl numhe~0.18 in the
roll structure wasstationaryin the rotating frame of the cell presence of rotation about a vertical axis. We reached this
[26] The wave number of this structure was about twice thabarameter value by using a 50% mixture of gaseoyamﬁ
of the cell with uniform spacing. Thus this pattern is unre-xe for the fluid[10]. In order to put the experimental results
lated to the wall mode, and we presume that it is provokedn a firm footing and to provide a direct comparison with
by the inhomogeneity due to the centrifugal force and theheory, we carried out linear and weakly nonlinear bifurca-
radial ramp. tion analyses of the Boussinesq equatifigs. (A3) in the
Square images of the central 8:65.6d of the cell were  AppendixX as a function of). We also performed Galerkin
used to study the bulk onset. We found that the influence oénalyses of Eqs(A3) for the nonlinear straight-roll states
the edge structure on the cell interior was much less than that
of the wall mode. Figure 24 shows the bulk onsets for two
values ofQ). Convection in the interior started at Rayleigh
numbers that were larger than those for the uniform cells
with rigid sidewalls. The experimental bulk bifurcation
points are shown in Fig. 21 as open triangles. The onset was
consistent with the stability limit at; of the conduction state
to stationary perturbations, and well aboyg andr,. Al- |
though the convective structures were time dependent, the
spectrum of time series for the local intensity was broad
band and we did not observe any characteristic frequencies.
A typical time sequence of patterns is shown in Fig. 25. The
patterns are reminiscent of those with fourfold coordination
that had been observed at lar@e and c=0(1) in pure
gase49]. We have to conclude that the observations made in  FIG. 25. Typical images above the bulk onset in a cell with a
this cell are inconsistent with a Hopf bifurcation, and havegentle ramp in spacing fdd =383, =7.3, andr =34.3. On a time
no concrete explanation for this disagreement with the theoscale with arbitrary origin, the images were takeh=a8.0, 8.2, 9.5,
retical prediction for the laterally infinite uniform system.  11.9, and 12.6 s.
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corresponding to selected aspects of the problem. mediately above the convective instability; insteAd, must

For smallQ) and in agreement with weakly nonlinear sta- be increased to a value that depends on the system size but
bility analysis, we found a supercritical bifurcation from the lies below the absolute instabilij24]. We calculated the
conduction state to the familiar pers-Lortz state of do- absolute instability line and found it to lie approximately
main chaos. This parameter range deserves more detaild%% above the convective Hopf bifurcation point. In a cell
future experimental attention because our convection cellwith rigid sidewalls disordered time dependent convection
were not designed for its optimal study. was found, beginning about 10% above the convective insta-

Above a tricritical rotation rat€),; and in agreement with  bility, i.e., close to but below the absolute instability. How-
weakly nonlinear theory, the bifurcation was subcritical inever, the pattern was disordered and its frequency was a fac-
the sense that it involved a discontinuous increase of théor of 1.5 larger than the predicted Hopf-bifurcation
amplitude at onseteg=0); but the bifurcation was free of frequency. This seems unusual since nonlinear dispersion
any detectable hysteresis. There were intermittent fluctuassually (but not necessarilyreduces the frequency.
tions between the ground state and the nonlinear convecting In an attempt to remove the wallmode influence on the
state whem\ T was kept within a fraction of a percent of the system interior, we replaced the rigid sidewall of our cell
critical value, but no large-amplitude convection could bewith a gentle radial ramp of the cell spacifp]. This was to
found below the onset whehT was decreased from above Suppress convection in and beyond the ramp. However, the
AT.. The experimental patterns found above onset weréamp led to a well organized roll pattern localized radially

time dependent and spatially disordered. near it. This pattern was stationary, and thus it was unrelated
In contrast to the experimental observations, a Galerkirio the wall mode even though its spatial structure was simi-
analysis yielded a saddlenode bifurcation to rollegi0, lar. In the presence of the ramp, we found evidence of

which, over a wide range dof2, was about 15% below the convection in the cell center until the stationary instability
linear stability limit of the conduction state:€0). Stability ~ point of the conduction state was reached. At that point, con-
analysis of the nonlinear convecting state in the subcrifical Vvection formed in the form of disordered cells with a ten-
range above and below=0 showed that the patterns were dency toward fourfold spatial coordination such as was
Kuppers-LortZ unstable. One m|ght have expected ﬁnite.found at Iargera. The observations made with this cell are
amplitude patterns above a Maxwell point which, for a quin-inconsistent with the expected Hopf bifurcation. We do not
tic Landau equation for the straight-roll amplitude, is locatedknow the reason for the difference between this system and
at e;=0.75¢,. In the presence of rotation the system isthe prediction for the laterally infinite uniform system, but
nonpotential and the Maxwell point then corresponds to &an speculate that it may be associated with the large-scale
value of e where an interface between the ground state anflow induced by the radial ramp.
the finite-amplitude state does not move.

Although it is not surprising that a disordered finite- ACKNOWLEDGMENTS
amplitude state failed to evolve out of the ground state for
€<0, one would have expected hysteresis in the sense that a Ye are grateful to F. Busse, P. Coullet, and L. Kramer for
finite-amplitude state prepared a0 would persist when numerous stimulating discussions. This work was supported
lowering the control parameter o< 0. However, this prob- By U.S. Department of Energy Grant No. DE-FG03-
lem was investigated recently for the one-dimensional quin87ER13738. Two of usG.A. and W.B. acknowledge sup-
tic complex Ginzburg-Landau equation in the Benjamin-FeirPOrt by NATO Linkage Grant No. CRG.LG.973103.
unstable regim@27]. For that case the absence of hysteresis
was demonstrated in some parameter regimes. Although this APPENDIX
model is not directly related to rotating RBC, it shows ex-

plicitly that, in the case of a subcritical bifurcation where the In this section we present in more detail than in Sec. Ill

finite amplitude state is unstable, hysteresis is not necessariiﬂe basic hydr_odyn_amlc equations and_ the calcgla_tlonal
observable ethods used in this paper. The theoretical description of
i thermal convection in binary fluids is well establisned].

For =50 the formation of a bulk pattern was preceded_l_h tandard B : " h 0 b lized b
by a wall mode 19] of traveling waves. Nonetheless, it was . € standard boussinesg equations have o be generaiized by

possible to study the bulk bifurcation in the system interior."cluding the concentration field. Together with the tem-
For Q) values up to 120 or so there was still a very rapid riseperatureT it determines the densily according to

of the amplitude at onset, but the transition was rounded and
it was difficult to unambiguously assign a quantitative value
to the amplitude discontinuity. We assume that the roundin%v

is caused by the interaction of the bulk pattern with the wall i
y P respectively, and, py, andC, the average values of tem-

mode. . - ; .
For even higher rotation rates, with>Qp,, weakly p_erature, density, and congentratlon, regpethely. The diffu-

nonlinar analysis predicts that the stationary bifurcation too've pqrt of the. concentration curreqt, is driven by con-

convection should be preceded by a supercritical Hopf pifyrcentration gradients as well as by temperature gradients,

cation. An experimental search for this phenomenon was

somewhat indecisive. The problem is made more compli- J.=D

cated because in a finite system a pattern will not form im-

P(T.C)=po[1=a(T-To)=B(C-Co)l.  (AD)

ith « and B the thermal and solutal expansion coefficients,

Kr
VC+—VT

VT (A2)
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with D the concentration diffusivity and; the thermal dif- The corresponding equation for the right-traveling amplitude
fusion ratio that parametrizes the Soret effect, i.e., the gerB is obtained from Eq.(A5) by the substitutionsy,—
eration of concentration currents by temperature variations-— vg, A« B. All coefficients in Eq.(A5) have been calcu-

In principle, there exists a contribution of the concentration|ated. They fulfill the conditiora,+b, > 0,b, < 0, which
field to the heat current as wethe Dufour effect, see, e.g., implies a supercritical bifurcation to stable standing waves as
Ref.[28]). However, consistent with previous investigationsin the pure-fluid casgl2]. According to the Newell criterion
[10] the Dufour effect is negligible in our case and it doesar+clbi>1 applied to standing waves with,=O(1) [30]

not modify noticeably any of the curves shown in this paper,q pattern is also Benjamin-Feir stable against long-

In nondimensionalized forrfiL0,29 the Boussinesq equa- wavelength modulation along theaxis.
tions (generalized by adding the Coriolis force proportional As pointed out abovésee Fig. 2@ for a Hopf bifurcation

to the rotation frequenc{?) now read as follows: one has to distinguish betweeonvectiveand absolutein-

1 stability (see, e.g., Ref.23]). Within the GL approximation
;Dtv+ 20e,Xv=—=VII+(6+c)e,+Av, [23] the absolute instability is located af=r,— 1 given by
D,#=Rv,+A#6, (A3)
Tovg (46)
= . —_ 6 :—'
D.c=RV¥v-e,+L(Ac—TVA0), a 483(1+c?)

with v the velocity andé,Il,c the reduced deviations of
temperature, pressure, concentration, respectively, from their
conductive profilesD, denotes the total derivativig+v- V. In the opposite case of small rotation frequendiegsee
The control parameter®, £, ¥ have already been defined again Fig.(2)] the bifurcation is towards stationary rolls
and interpreted in Sec. Ill. Equatiof&3) have to be supple- [w(qc,R.)=0]. Besides the amplitudB and the group ve-
mented by the incompressibility conditi&h-v=0, whichis  locity vy the imaginary parts of all coefficientsi.e.,
automatically guaranteed by introducing the poloidaland  c,4,c;,a;,b;) vanish in Eq.(A5). When () is continuously
toroidal (g) velocity potentials asi=V XV xXfe,+VXge,.  increased from zero the coefficieat changes sign from
We use no-slip boundary conditions fer at the vertical positive to negative at a lower tricritical poifi,,, i.e., the
boundariesz= +d/2. Instead ofc the introduction of{=c  bifurcation switches from supercritical to subcriticidee
—W 6 is useful. It simplifies the notation of the nondimen- Fig. 1). The subcritical nonlinear periodic roll solutions have
sionalized concentration curred,=—LV{ (A2), which  been calculated within an Galerkin approach for binary flu-
like 6 vanishes at the impermeable boundades+d/2. ids, where we followed the unstable branch starting from the
Let V(x,z,t)=(6,f,g,c) be a symbolic vector notation onsete=0 via the saddlenode towards the solutionseat
for the field variables in EQLA3). The onset of instability is >0. The Galerkin modes were chosen as in R29).
obtained from a standard linear stability analysis of the basic If one follows the stationary branch the coefficiemt
stateV=0. The ansat/(x,zt)=eMe'9%U(q,z) diagonal- changes sign again at a second tricritcal péipy (see Fig.
izes the problem. The eigenvalue\(q,R)=0c(q,R) 1). There exists a codimension-two point(t, where the
+iw(g,R) with the maximal real pary determines the critical Rayleigh numberR, of the stationary and oscillatory
growth rate, which crosses zeroR& R, andq=g,. branch coinciddbut the corresponding. remain different
Let us first consider the case of large rotation frequencyn our case ¢=0.2) the second tricritical point is irrelevant,
), where we find a Hopf bifurcatiofsee Fig.(2)] with the  since at the relevanf) the Hopf bifurcation precedes the
critical Hopf frequencyw.= w(R.,q.). To assess the result- stationary bifurcation.
ing patterns in the weakly nonlinear regime we start as We have also performed a full nonlinear stability analysis
ususal from a superposition of left- and right-traveling of the periodic roll solutions within a Galerkin approach for
waves, the stationary branch. The rolls are always unstable against
3 | (Gt o) the short-wavelength Kapers-Lortz instability above)
V(x,z,H)=[A(x,1)e " eIU(q,2) =0y . As a test we have alternatively identified the KL
+B(x,1)e o) |U* (q,2) +c.c. (Ad) instabili?y in the SL_lpercriticaI regir_n_eQKL<Q<Qt1) by _
calculating appropriate cross coefficients of coupled ampli-
The amplitudeA of the left-traveling wave fulfills the equa- tude equations. In the subcritical reginfe>(),; we ob-

tion served in addition long-wavelength instabilities of the
_ o skewed-varicose type. The detailed analysis as well as the
To(dr—vgdx) A= €(1+1Co)A+Ep(L1+iCy)dyA numerical simulations of Eq$A3) by using a pseudospec-

B . 28 . 2 tral code will appear in a separate paper. In general, all sce-
(a+ia)|AI*A= (b +ibi)[B|°A. narios we found in the binary fluids match qualitatively the
(A5) pure fluid case with rotation in the case of small
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